Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 50: 109560, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37753259

RESUMO

In-field data were collected in Costa Rica between 2018-2021 on newly planted grafted and non-grafted coffee plants grown under artificial shade nets and across an elevation gradient (1050, 1250 and 1450 m.a.s.l). The coffee plants consisted of Coffea arabica F1 hybrid plants ('H3 i.e. Caturra cv. X Ethiopian 531'), which were derived from a somatic embryogenesis clonal propagation process, an American C. arabica pure line ('Villa Sarchi') and C. canephora 'Nemaya' (the latter two both being produced by seed). Data from eight different coffee types (including these three genotypes) and different grafting combinations (including reverse and auto-grafting) were collected. Data concerned plant traits such as grafting compatibility (plant collar diameters above and below graft union), agronomic characteristics (aerial and root traits), leaf ecophysiology (leaf gas-exchange and chlorophyll fluorescence), yield and quality attributes (bean size, peaberry percentage, WB100 and SCA note). Climate data were also included for comparison on the farm plots along the elevation gradient. Linear mixed models were used to test for effects of elevation (test sites), coffee types (grafted or non-grafted combinations) and interaction between coffee types and elevations. Least square mean estimates were calculated for significant fixed effects and Tukey tests applied for pairwise tests. A tangential hyperbola curve was used to analyse leaf gas-exchange data. These datasets and R scripts can be re-used as a guide for future analyses concerning coffee agronomy or eco-physiological interactions for other plant species. Other potential re-uses could be meta-analyses aimed at comparing coffee yield, quality, or other agronomic traits across different environmental conditions (such as under shade of an agroforestry system or across different elevation sites).

2.
Sci Total Environ ; 899: 165657, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478928

RESUMO

Climate models predict decreasing precipitation and increasing air temperature, causing concern for the future of cocoa in the major producing regions worldwide. It has been suggested that shade could alleviate stress by reducing radiation intensity and conserving soil moisture, but few on-farm cocoa studies are testing this hypothesis. Here, for 33 months, we subjected twelve-year cocoa plants in Ghana to three levels of rainwater suppression (full rainwater, 1/3 rainwater suppression and 2/3 rainwater suppression) under full sun or 40 % uniform shade in a split plot design, monitoring soil moisture, physiological parameters, growth, and yield. Volumetric soil moisture (Ï´w) contents in the treatments ranged between 0.20 and 0.45 m3m-3 and increased under shade. Rainwater suppression decreased leaf water potentials (ѱw), reaching -1.5 MPa in full sun conditions indicating severe drought. Stomatal conductance (gs) was decreased under the full sun but was not affected by rainwater suppression, illustrating the limited control of water loss in cocoa plants. Although pre-dawn chlorophyll fluorescence (Fv/Fm) indicated photoinhibition, rates of photosynthesis (Pn) were highest in full sun. On the other hand, litter fall was highest in the full sun and under water stress, while diameter growth and carbon accumulation increased in the shade but was negatively affected by rainwater suppression. Abortion of fruits and damage to pods were high under shade, but dry bean yield was higher compared to under the full sun. The absence of interactions between shade treatments and rainwater suppression suggests that shade may improve the performance of cocoa, but not sufficiently to counteract the negative effects of water stress under field conditions.


Assuntos
Cacau , Árvores , Secas , Desidratação , Solo , Folhas de Planta/fisiologia , Fotossíntese/efeitos da radiação
3.
Ecol Evol ; 9(23): 13619-13631, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31871671

RESUMO

Coffee leaf rust (CLR), caused by the fungal pathogen Hemileia vastatrix, has plagued coffee production worldwide for over 150 years. Hemileia vastatrix produces urediniospores, teliospores, and the sexual basidiospores. Infection of coffee by basidiospores of H. vastatrix has never been reported and thus far, no alternate host, capable of supporting an aecial stage in the disease cycle, has been found. Due to this, some argue that an alternate host of H. vastatrix does not exist. Yet, to date, the plant pathology community has been puzzled by the ability of H. vastatrix to overcome resistance in coffee cultivars despite the apparent lack of sexual reproduction and an aecidial stage. The purpose of this study was to introduce a new method to search for the alternate host(s) of H. vastatrix. To do this, we present the novel hypothetical alternate host ranking (HAHR) method and an automated text mining (ATM) procedure, utilizing comprehensive biogeographical botanical data from the designated sites of interests (Ethiopia, Kenya and Sri Lanka) and plant pathology insights. With the HAHR/ATM methods, we produced prioritized lists of potential alternate hosts plant of coffee leaf rust. This is a first attempt to seek out an alternate plant host of a pathogenic fungus in this manner. The HAHR method showed the highest-ranking probable alternate host as Psychotria mahonii, Rubus apetalus, and Rhamnus prinoides. The cross-referenced results by the two methods suggest that plant genera of interest are Croton, Euphorbia, and Rubus. The HAHR and ATM methods may also be applied to other plant-rust interactions that include an unknown alternate host or any other biological system, which rely on data mining of published data.

4.
Ecol Evol ; 8(22): 11261-11272, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30519442

RESUMO

Water availability is often described as one of the main drivers of phenology of tropical dry forests but experimental studies to identify the cues triggering phenological changes are few. In a greenhouse trial, we exposed seedlings of thirteen origins, seven from West and six from East Africa, respectively, of Adansonia digitata L.(baobab) to a well-watered control treatment and a water withholding treatment in combination with exposure to three different daylengths (11.5, 12.0, and 12.5 hr). Responses were measured in terms of meristematic activity, number of leaves, and height growth followed over 6.5 months. Multi-level mixed-effects statistical models were used to analyze how environmental and inter-population variables affected phenological behavior. Flushing was influenced by the daylength with the lowest degree of meristematic activity observed in the short daylength treatment. Daylength also influenced the number of leaves through an interaction with the water regime. The water regime influenced all variables through interactions with the origins. Seedlings subjected to water stress had higher meristematic activity, but initially lower numbers of leaves than continuously watered plants. Height growth in continuously watered plants was fastest or at par with water-stressed plants, depending on the origin. Origins from West Africa tended to have higher meristematic activity and their phenology was found to be less influenced by water withholding than East African origins. There were no signs of significant differences between origins in their response to photoperiod. In conclusion, baobab seedlings show opportunistic behavior, setting leaves when water is available, but larger activity is found when days are long. We discuss the results in terms of triggering factors for baobab phenology and adaptation to specific environmental conditions at the site of origins.

5.
Nat Ecol Evol ; 2(9): 1428-1435, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30104750

RESUMO

Plant water storage is fundamental to the functioning of terrestrial ecosystems by participating in plant metabolism, nutrient and sugar transport, and maintenance of the integrity of the hydraulic system of the plant. However, a global view of the size and dynamics of the water pools stored in plant tissues is still lacking. Here, we report global patterns of seasonal variations in ecosystem-scale plant water storage and their relationship with leaf phenology, based on space-borne measurements of L-band vegetation optical depth. We find that seasonal variations in plant water storage are highly synchronous with leaf phenology for the boreal and temperate forests, but asynchronous for the tropical woodlands, where the seasonal development of plant water storage lags behind leaf area by up to 180 days. Contrasting patterns of the time lag between plant water storage and terrestrial groundwater storage are also evident in these ecosystems. A comparison of the water cycle components in seasonally dry tropical woodlands highlights the buffering effect of plant water storage on the seasonal dynamics of water supply and demand. Our results offer insights into ecosystem-scale plant water relations globally and provide a basis for an improved parameterization of eco-hydrological and Earth system models.


Assuntos
Ecossistema , Folhas de Planta/metabolismo , Estações do Ano , Água/metabolismo , Imagens de Satélites
6.
Tree Physiol ; 38(5): 696-705, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29186586

RESUMO

Recent studies have suggested that an association between size and speed of stomatal opening of stomata within taxa is likely to play a role in photosynthesis and transpiration. In this study we investigate whether this correlation applies for seedlings of 11 rainforest species from different taxa, and whether differences in stomatal and gas exchange parameters were related to initial growth under field and controlled conditions. The experiment was conducted on seedlings of nine late successional species and two early successional species, placed in full sunlight or 70% shade. We assessed density, size, length and width of guard cells, coupled with gas exchange parameters in the transition from darkness to light, recording minimum stomatal conductance during daytime darkness (gs-dark), operating maximum stomatal conductance (gs-op), speed of stomatal opening and the time to reach 50% conductance (T-50%). All stomata and gas exchange parameters were different between species. Shade significantly affected size and density, and all gas exchange parameters except gs-op were different between light situations. Stomatal size correlated negatively with speed of opening and positively with T-50%, confirming that smaller stomata open faster than large stomata. The two early successional species were very different in stomatal size and density, and in response to light. Anatomic parameters and physiological traits were not related to height growth, but gs-dark, gs-op and speed of stomatal opening were associated with biomass growth in a subselection of six late successional species.


Assuntos
Estômatos de Plantas/fisiologia , Floresta Úmida , Árvores/fisiologia , Escuridão , Indonésia , Plântula/fisiologia , Especificidade da Espécie , Luz Solar
7.
Front Plant Sci ; 7: 751, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379105

RESUMO

European beech (Fagus sylvatica L., hereafter beech), one of the major native tree species in Europe, is known to be drought sensitive. Thus, the identification of critical thresholds of drought impact intensity and duration are of high interest for assessing the adaptive potential of European beech to climate change in its native range. In a common garden experiment with one-year-old seedlings originating from central and marginal origins in six European countries (Denmark, Germany, France, Romania, Bosnia-Herzegovina, and Spain), we applied extreme drought stress and observed desiccation and mortality processes among the different populations and related them to plant water status (predawn water potential, ΨPD) and soil hydraulic traits. For the lethal drought assessment, we used a critical threshold of soil water availability that is reached when 50% mortality in seedling populations occurs (LD50SWA). We found significant population differences in LD50SWA (10.5-17.8%), and mortality dynamics that suggest a genetic difference in drought resistance between populations. The LD50SWA values correlate significantly with the mean growing season precipitation at population origins, but not with the geographic margins of beech range. Thus, beech range marginality may be more due to climatic conditions than to geographic range. The outcome of this study suggests the genetic variation has a major influence on the varying adaptive potential of the investigated populations.

8.
Front Plant Sci ; 7: 821, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379120

RESUMO

Polyploidy is a common phenomenon in the evolution of angiosperms. It has been suggested that polyploids manage harsh environments better than their diploid relatives but empirical data supporting this hypothesis are scarce, especially for trees. Using microsatellite markers and flow cytometry, we examine the frequency of polyploids and diploids in a progeny trial testing four different populations of Acacia senegal, a species native to sub-Saharan regions of Africa. We compare growth between cytotypes and test whether polyploid seedlings grow better than diploids. Our results show that polyploids coexist with diploids in highly variable proportions among populations in Senegal. Acacia senegal genotypes were predominantly diploid and tetraploid, but triploid, pentaploid, hexaploid, and octaploid forms were also found. We find that polyploids show faster growth than diploids under our test conditions: in an 18 years old field trial, polyploid superiority was estimated to be 17% in trunk diameter and 9% in height while in a growth chamber experiment, polyploids grew 28% taller, but only after being exposed to drought stress. The results suggest that polyploid A. senegal can have an adaptive advantage in some regions of Africa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...